پیش بینی تقاضای فرآورده های نفتی با استفاده از شبکه های عصبی مصنوعی و روش طراحی آزمایشات تاگوچی (مورد مطالعه: استان هرمزگان)
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده مدیریت و اقتصاد
- author رسول خوانچه مهر
- adviser علی مروتی شریف آبادی سید محمود زنجیرچی
- Number of pages: First 15 pages
- publication year 1392
abstract
فرآورده های نفتی عاملی موثر در رشد و توسعه ی اقتصادی تلقی می شود و در عملکرد بخش های مختلف اقتصادی نقش چشم گیری ایفا می کند. از این رو مسئولان کشور باید تلاش کنند تا با پیش بینی هر چه دقیق تر مصرف فرآورده های نفتی و برنامه ریزی صحیح در هدایت مصرف، پارامترهای عرضه و تقاضای فرآورده های نفتی را به نحو مطلوب کنترل کنند. پیش بینی تقاضای انرژی و فرآورده های نفتی با استفاده از شبکه های عصبی مصنوعی، موضوع مطالعات بسیاری می باشد. طراحی مناسب پارامترهای (ساختار) شبکه موجب می شود تا دقت و عملکرد شبکه های عصبی مصنوعی افزایش یابد. در اکثر مطالعات از روش سعی و خطا برای تنظیم پارامترهای شبکه های عصبی مصنوعی استفاده می شود. روش سعی و خطا برای رسیدن به مناسب ترین ساختار شبکه های عصبی مصنوعی راه حل مطمئنی نمی باشد. در مطالعه حاضر، با استفاده از روش طراحی آزمایشات تاگوچی، مناسب ترین ساختار شبکه های عصبی مصنوعی به منظور پیش بینی تقاضای فرآورده های نفتی در استان هرمزگان مشخص می شود. ورودی های شبکه عصبی مصنوعی عبارتند از جمعیت، تولید ناخالص داخلی، صادرات، واردات و تعداد خودروهای بنزین سوز. تجزیه و تحلیل واریانس پارامترهای شبکه های عصبی مصنوعی نشان می دهد که تعداد نرون در لایه پنهان اول بیشترین سهم مشارکت را در تغییر میانگین مربع خطای شبکه دارد و سهم مشارکت آن حدود 40% می باشد. سهم مشارکت الگوریتم یادگیری نیز حدود 27% است. نتایج حاصل از تحقیق حاضر نشان می دهد که شبکه های عصبی مصنوعی که با استفاده از روش طراحی آزمایشات تاگوچی طراحی شده اند، عملکرد بهتری نسبت به شبکه هایی که به صورت سعی و خطا طراحی شده اند، دارند.
similar resources
بهبود پیش بینی تقاضای برق با استفاده از طراحی آزمایشات تاگوچی
یک پیش بینی خوب تقاضا، پیش نیازی ضروری به منظور مدیریت یک سیستم انرژی برق است. در طول سال ها، تکنیک های پیش بینی زیادی با قابلیت های متفاوت معرفی شده اند. هرچند عوامل مختلف موثر بر پیش بینی در تحقیقات پیشین کاوش شده اند، اما پارامترهای قابل کنترل مربوط به داده ها و برهم کنش آن ها هیچ گاه به طور دقیق مورد مطالعه قرار نگرفته اند. بر همین اساس این تحقیق، روش تاگوچی را برای بررسی عوامل قابل کنترل م...
full textپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
پیش بینی تقاضای کوتاه مدت آب شهری کمک موثری به مدیران و بهره برداران سیستمهای آب شهری می باشد تا بتوانند نسبت به مدیریت صحیح مصرف، مخازن، پمپها، شیرآلات و تصفیه خانه ها اقدام نمایند. مصرف کوتاه مدت آب تابعی از پارامترهای مختلف و متنوع مانند شرائط اقلیمی و هواشناسی، مناسبتهای فرهنگی، اقتصادی، اجتماعی و مصارف گذشته می باشد. بدلیل همین تنوع، پیش بینی مصرف کوتاه مدت بصورت تحلیلی بسیار مشکل و یا نام...
full textپیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی
Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...
full textیافتن مناسبترین ساختار شبکه عصبی مصنوعی با استفاده از روش طراحی آزمایشات تاگوچی
چکیده تأخیر در تأمین نفت گاز، پیامدهای سیاسی، اجتماعی و اقتصادی وسیعی را به دنبال دارد؛ بنابراین پیش بینی دقیق تقاضای نفت گاز بسیار مهم است. استفاده از شبکه های عصبی مصنوعی در پیش بینی کاربرد زیادی دارد. طراحی مناسب پارامترهای (ساختار) شبکه موجب می شود دقت و عملکرد شبکه های عصبی مصنوعی افزایش یابد. در بیشتر مطالعات از روش سعی و خطا برای تنظیم پارامترهای شبکه های عصبی مصنوعی استفاده می شود ...
full textمقایسه قدرت پیش بینی روش شبکه عصبی مصنوعی با سایر روش های پیشبینی: مورد قیمت چغندرقند
این مطالعه با هدف پیشبینی قیمت اسمی و واقعی چغندرقند و مقایسه روش شبکه عصبی مصنوعی با سایر روشها صورت گرفت. پس از بررسی ایستایی سریها، تصادفی بودن متغیرها با استفاده از دو آزمون ناپارامتریک والد- ولفویتز و پارامتریک دوربین- واتسون بررسی شد. براساس نتایج این آزمونها سری قیمت اسمی چغندرقند بهعنوان سری غیرتصادفی و قابل پیشبینی و سری قیمت واقعی بهعنوان سری تصادفی ارزیابی شد. دوره مطالعه نیز ...
full textپیش بینی قیمت سهام شرکت فرآورده های نفتی پارس با استفاده از شبکه عصبی و روش رگرسیونی مطالعه موردی: قیمت سهام شرکت فرآورده های نفتی پارس
یکی از راه های تامین سرمایه برای سرمایه گذاری، انتشار اوراق قرضه و سهام از طریق بازار بورس می باشد. افراد در این بازار انتظار دستیابی به سود را دارند. اولین و مهم ترین عاملی که در اتخاذ سرمایه گذاری در بورس فراروی سرمایه گذار قرار دارد عامل قیمت سهام است که به تبع آن مقوله ارزیابی و پیش بینی قیمت آینده نیز مطرح می شود. فعالان در این بازار درصدد دستیابی و به کارگیری روش هایی هستند تا با پیش بینی...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده مدیریت و اقتصاد
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023